Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Cerebellum ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682386

RESUMO

Proprioception from muscle spindles is necessary for motor function executed by the cerebellum. In particular, cerebellar nuclear neurons that receive proprioceptive signals and send projections to the lower brainstem or spinal cord play key roles in motor control. However, little is known about which cerebellar nuclear regions receive orofacial proprioception. Here, we investigated projections to the cerebellar nuclei from the supratrigeminal nucleus (Su5), which conveys the orofacial proprioception arising from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 resulted in a large number of labeled axon terminals bilaterally in the dorsolateral hump (IntDL) of the cerebellar interposed nucleus (Int) and the dorsolateral protuberance (MedDL) of the cerebellar medial nucleus. In addition, a moderate number of axon terminals were ipsilaterally labeled in the vestibular group Y nucleus (group Y). We electrophysiologically detected JCMS proprioceptive signals in the IntDL and MedDL. Retrograde tracing analysis confirmed bilateral projections from the Su5 to the IntDL and MedDL. Furthermore, anterograde tracer injections into the external cuneate nucleus (ECu), which receives other proprioceptive input from forelimb/neck muscles, resulted in only a limited number of ipsilaterally labeled terminals, mainly in the dorsomedial crest of the Int and the group Y. Taken together, the Su5 and ECu axons almost separately terminated in the cerebellar nuclei (except for partial overlap in the group Y). These data suggest that orofacial proprioception is differently processed in the cerebellar circuits in comparison to other body-part proprioception, thus contributing to the executive function of orofacial motor control.

2.
Brain Struct Funct ; 227(1): 111-129, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34611777

RESUMO

The supratrigeminal nucleus (Su5) is a key structure for controlling jaw movements; it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projections to the trigeminal motor nucleus (Mo5). However, the central projections and regulation of JCMS proprioceptive sensation are not yet fully understood. Therefore, we aimed to reveal the efferent and afferent connections of the Su5 using neuronal tract tracings. Anterograde tracer injections into the Su5 revealed that the Su5 sends contralateral projections (or bilateral projections with a contralateral predominance) to the Su5, basilar pontine nuclei, pontine reticular nucleus, deep mesencephalic nucleus, superior colliculus, caudo-ventromedial edge of the ventral posteromedial thalamic nucleus, parafascicular thalamic nucleus, zona incerta, and lateral hypothalamus, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) to the intertrigeminal region, trigeminal oral subnucleus, dorsal medullary reticular formation, and hypoglossal nucleus as well as the Mo5. Retrograde tracer injections into the Su5 demonstrated that the Su5 receives bilateral projections with a contralateral predominance (or contralateral projections) from the primary and secondary somatosensory cortices, granular insular cortex, and Su5, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) from the dorsal peduncular cortex, bed nuclei of stria terminalis, central amygdaloid nucleus, lateral hypothalamus, parasubthalamic nucleus, trigeminal mesencephalic nucleus, parabrachial nucleus, juxtatrigeminal region, trigeminal oral and caudal subnuclei, and dorsal medullary reticular formation. These findings suggest that the Su5, which receives JCMS proprioception, has efferent and afferent connections with multiple brain regions that are involved in emotional and autonomic functions as well as orofacial motor functions.


Assuntos
Propriocepção , Animais , Córtex Insular , Núcleos Intralaminares do Tálamo , Neurônios Motores , Fusos Musculares , Vias Neurais , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...